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Oscillation Physics with Atmospheric Neutrinos

• Neutrinos available over a wide range of energies and baselines

• Oscillations produce distinctive  

pattern in energy-angle space


• Approach: control systematics 
using events in “side band” 
regions – trade statistics for 
constraints on systematics


• Neutrinos oscillating over one  
Earth diameter have a νμ  
survival minimum at ~25 GeV

• Hierarchy-dependent matter effects  

on ν or ν ̅(MSW etc.) below 10-20 GeV

~12,700km
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Atmospheric Oscillations with IceCube

• Project data onto 
reconstructed (L/Eν)  
for illustration

• Actual analysis is 

performed in 2D to 
control systematics


• Shaded range shows 
allowed systematics  
with constraints  
from current data


• Second survival  
maximum just  
below DeepCore’s  
energy threshold
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• Baseline detector consists of 40 additional strings of 60 Digital  
Optical Modules each, deployed inside the DeepCore volume

• Geometry optimization underway – additional DOMs have relatively low incremental 

cost – final proposal likely 80-96 DOMs/string


• 20-22 m string spacing (cf. 125 m  
for IceCube, 72 m for DeepCore)


• ~25x higher photocathode density


• Additional in situ calibration devices  
will better control detector systematics 
(not included in projected performance)


• Engineering issues and cost of  
deploying instrumentation are well 
understood from IceCube experience

• Can install ≥20 strings per season  

once underway
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Signatures of the Neutrino Mass Hierarchy

• Matter effects alter oscillation probabilities for neutrinos or antineutrinos traversing 
the Earth

• Maximum effects seen for specific energies and baselines (= zenith angles) due to the Earth’s 

density profile


• Neutrino oscillation probabilities  
affected if hierarchy is normal,  
antineutrinos if inverted


• Rates of all flavors are affected


• Note: effect of detector  
resolution not shown here


• Distinct signatures observable 
in both track (νμ CC) and cascade 
(νe and ντ CC, νx NC) channels

• At higher energies, νμ CC  

events distinguishable by the  
presence of a muon track
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Hierarchy Signature: Statistical Significance

Preliminary

(a) Track-like events.

Preliminary

(b) Cascade-like events.

Figure 13: Distinguishability metric as defined in [43] for one year of simulated PINGU data with
reconstruction and particle identification applied. The left panel shows track-like events (mostly due to
CC ⌫µ) while the right shows cascade-like events (mostly ⌫e and ⌫⌧ CC events, as well as NC events from
any neutrino flavors).

• reconstructed vertex depth within PINGU or the IceCube instrumented volume
directly below PINGU

• ✓rec > 90� (all events are upward going)

In Fig. 13 we show the distinguishability metric evaluated for the track channel and cas-
cade channel, where the energy-dependent PID e�ciency for separating the two channels
is parametrized using Fig. 9, based on a full simulation and reconstruction of simulated
data.

4.1.2. Analysis Method

Three di↵erent independent analyses were employed in this study. Full details of the sta-
tistical methods are given in Appendix A, where we show that the approaches agree at
the 5% level. The most detailed method, using a library of simulated events to generate
the distribution of observables (E

⌫

and cos ✓

⌫

) expected from di↵erent possible combina-
tions of true oscillation parameters, generates ensembles of pseudo-experiments for these
scenarios and uses a likelihood ratio method to determine the degree to which one hier-
archy is favored. Although this approach is currently too computationally intensive to
incorporate the full range of systematics under investigation, it provides a benchmark to
ensure that the statistical approximations used in the other two methods are valid.
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• With full detector response included, distinctive (and quite different) hierarchy-
dependent signatures are still visible in both the track and cascade channels

• Quantity shown is an illustration of statistical significance per bin (as per Akhmedov et al. 

arXiv:1205.7071)


• Parametrized rates and detector resolutions and efficiencies used to eliminate statistical 
fluctuations

Events ID’d as cascades (νe, NC)Events ID’d as tracks (νμ CC)
arXiv:1401.2046

http://arxiv.org/abs/1306.5846
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Analysis Improvements Underway

• Increased #DOMs/string to match baseline Gen2 High Energy design (marginal cost of 
DOMs is relatively small)


• Inclusion of additional detector-related effects on event reconstruction – appears 
minimal

• Uncertainties in optical properties of South Pole ice (e.g. anisotropic scattering)


• Injecting DOM-by-DOM calibration errors for sensitivity to Cherenkov photons, in addition to 
possible systematic errors in energy scale calibration (already included)


• Correcting Monte Carlo error in non-Poissonian noise levels in simulated PINGU DOMs


• Treatment of ν-N interaction uncertainties via GENIE instead of ad hoc scaling


• Detailed modeling of atmospheric flux uncertainties (per Barr et al. astro-ph/0611266) 
rather than simpler scaling of flux level and spectral index


• Incorporating full suite of systematic uncertainties into likelihood-based significance 
estimates from ensemble of pseudo-data sets (so far only checks with reduced sets)
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Neutrino Interaction Uncertainties

• Biggest effects so far: 
uncertainties in Bodek- 
Yang higher twist 
parameters, axial mass 
term for hadron 
resonance production

• Ad hoc scalings still 

included, and covariance 
not accounted for – may  
be over-counting…


• Increases median  
time-to-3σ by about  
half a year
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Significance vs Time

Joshua Hignight 17/19

preliminary
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Other Oscillation Parameters

• PINGU not sensitive to δCP – complementarity with NOvA, T2K


• Sensitivity to the mass 
ordering strongly  
dependent on θ23 octant

• Worst-case first octant 

solution assumed in  
performance studies


• Implies considerable 
ability to measure octant 
(not yet evaluated explicitly)


• Precision for θ23 and Δm2atm being evaluated, appears  
comparable to NOvA or T2K 2020 expectations
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PINGU sensitivity to the NMH

True oscillation parameters
✓12 = 33.6�

✓23 = 38.7�, 51.3�

✓13 = 8.93�

�m2
21 = 7.54·10�5 eV2/c4

�m2
31 = -2.38·10�3 eV2/c4

�CP = 0
[based on Fogli et al.,

Phys.Rev. D86 (2012) 013012]

With baseline geometry, 3 � determination of mass hierarchy with
3.5 years of data (first octant)

I Combine track and cascade channels to obtain NMH significance
I Significance calculated using parametric response of detector from MC
I Verified to work using Full MC with a limited number of systematics

Optimization of detector geometry, improvement of analysis and refined
treatment of systematics in progress

J. P. Athayde Marcondes de André PINGU – NUFACT 2014 27 August 2014 19 / 23

?
! earliest full detector starting date anticipated: 2020
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?
! earliest full detector starting date anticipated: 2020

Akhmedov, Razzaque, and Smirnov arXiv:1205.7071
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Tau Neutrino AppearanceOther atmospheric measurements: ⌫⌧ appearance
Expected sensitivity

Livetime (months)
1 2 3 4 5 6

)σ
 a

pp
ea

ra
nc

e 
(

τν
no

 
Si

gn
ifi

ca
nc

e 
to

 e
xc

lu
de

0

2

4

6

8

10

expected
σ1±
σ2±

 limitβ=αGaussian approximation

 norm=1τνtrue 
PINGU

Livetime (months)
1 2 3 4 5 6

 n
or

m
al

iz
at

io
n

τν
Tr

ue
 

0.0

0.5

1.0

1.5

σ5
expected
σ1±
σ2± norm=1τνmeasured 

PINGU

Assumes similar systematics as NMH

5� exclusion of no ⌫⌧ appearance after 1 month of data
10% precision in the ⌫⌧ normalization after 6 months

I Test of the unitarity of the ⌫ mixing matrix
J. P. Athayde Marcondes de André PINGU – NUFACT 2014 27 August 2014 21 / 23

Preliminary

Preliminary

• Energy range of PINGU  
allows uniquely high 
tau neutrino rates

• Measure ντ appearance 

as characteristic  
distortion of cascade  
angular/energy  
distribution


• Interesting test of unitarity 
of 3x3 neutrino mixing

• Direct probe of Uτ3


• 10% precision on ντ appearance rate within a year
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IceCube-Gen2

• Planning underway for  
a multipurpose facility 
leveraging the experience 
and investment in IceCube

• White paper describing 

our vision of this 
detector at 
arXiv:1412.5106


• PINGU will be one 
component of  
IceCube-Gen2

12
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Cost and Schedule

• Primary US funding source for  
IceCube-Gen2 would be NSF

• MREFC-scale facility, total cost  

comparable to original IceCube


• Many items common to PINGU and  
other elements (drill, engineering, etc.)


• Marginal cost of PINGU within larger 
IceCube-Gen2 is $88M, with expected  
non-US contributions of $25M


• Gen2 conceptual design document and 
PINGU performance update this year


• In a favorable scenario, PINGU 
completion possible by January 2021 
or 2022

13

Cost for PINGU Component

Hardware $48M

Logistics $23M

Contingency $16M

Expected non-US 
contributions $25M

Total US Cost $63M
(elements do not sum to total due to rounding)
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Conclusions

• PINGU has a unique place in the world-wide neutrino program 

• Measurements at a range of higher energies/longer baselines, with high 

statistics


• Opportunity to discover new physics is greatly enhanced by 
PINGU’s complementarity with other experiments


• PINGU will be a natural part of the IceCube-Gen2 Observatory

• Closely based on IceCube technology – low technical and cost risk


• PINGU will use the same hardware as high energy extensions of IceCube –
common design gives flexibility to optimize based on progress of the field


• Focus today is on neutrino physics, but also interesting potential in 
searches for low mass dark matter and other exotica
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Estimating Sensitivity to the Mass Hierarchy

• Fisher Information Matrix method 
uses parametrized detector response 
based on full simulation, uses 
gradients in likelihood space to 
determine width of parabolic 
minimum


• Full Monte Carlo method uses  
likelihood ratio analysis of pseudo-
data sets: slower, includes fewer 
systematics but does not pre-
suppose distributions are Gaussian


• For common set of systematics and 
high statistics, the methods agree 

Estimating sensitivity of PINGU to the NMH
methods

Currently two methods used: the Fisher Information Matrix and
Likelihood Ratio

I Output of full simulation and reconstruction used
I Analysis done in E⌫ ⇥ cos(zenith) space
I Fisher Information Matrix: Fast evaluation using gradients at each point to

fully describe parabolic minimum
I Likelihood Ratio: Full analysis from pseudo data sets. While method is

slower it does not pre-suppose distributions are Gaussian
I Both methods are in agreement

J. P. Athayde Marcondes de André PINGU – NUFACT 2014 27 August 2014 17 / 23
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Relative Impact of SystematicsBreakdown of Impact: 3 Year Exposure

Parameter Total (%) Cascades (%) Tracks (%)
hierarchy 100.0 100.0 100.0
�m31 13.9 10.4 32.6
⌫ xsec scale 12.2 4.2 0.1
higher-twist BY 10.3 6.9 12.3
MaCCRES 8.1 2.7 5.2
✓13 5.4 2.0 5.2
C⌫-BY 5.1 0.8 10.2
✓23 5.0 10.5 16.4
energy scale 1.0 2.0 3.8
⌫ xsec scale 0.8 4.5 0.2
MaCCQE 0.6 3.2 1.7
effective area scale 0.1 1.6 1.0

Joshua Hignight 18/19

preliminary



Timothy C. Arlen

Resolutions
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νe, 9-11 GeV

coszen

Energy Energy

coszen

νμ, 9-11 GeV

— binned reco - true 
— double gauss  
      parameterization

preliminary

preliminary

preliminary

preliminary


